Friday, October 12, 2007


Electrical engineering (sometimes referred to as electrical and electronic engineering) is a semi-professional and professional engineering discipline that deals with the study and/or application of electricity, electronics and electromagnetism. The field first became an identifiable occupation in the late nineteenth century after commercialization of the electric telegraph and electrical power supply. The field now covers a range of sub-studies including those that deal with power, electronics, control systems, signal processing and telecommunications.
The term electrical engineering may or may not encompass electronic engineering. Where a distinction is made, electrical engineering is considered to deal with the problems associated with large-scale electrical systems such as power transmission and motor control, whereas electronic engineering deals with the study of small-scale electronic systems including computers and integrated circuits. Another way of looking at the distinction is that electrical engineers are usually concerned with using electricity to transmit energy, while electronics engineers are concerned with using electricity to transmit information.

History
Electricity has been a subject of scientific interest since at least the early 17th century. Probably the first electrical engineer was William Gilbert who designed the versorium: a device that detected the presence of statically charged objects. He was also the first to draw a clear distinction between magnetism and static electricity and is credited with establishing the term electricity.
Early developments
During the development of radio, many scientists and inventors contributed to radio technology and electronics. In his classic UHF experiments of 1888, Heinrich Hertz transmitted (via a spark-gap transmitter) and detected radio waves using electrical equipment. In 1895, Nikola Tesla was able to detect signals from the transmissions of his New York lab at West Point (a distance of 80.4 km).

Electrical engineer Modern developments
Electrical engineers typically possess an academic degree with a major in electrical engineering. The length of study for such a degree is usually four or five years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, Bachelor of Technology or Bachelor of Applied Science depending upon the university. The degree generally includes units covering physics, mathematics, computer science, project management and specific topics in electrical engineering. Initially such topics cover most, if not all, of the sub-disciplines of electrical engineering. Students then choose to specialize in one or more sub-disciplines towards the end of the degree.
Some electrical engineers also choose to pursue a postgraduate degree such as a Master of Engineering/Master of Science, a Master of Engineering Management, a Doctor of Philosophy in Engineering or an Engineer's degree. The Master and Engineer's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia. In the United Kingdom and various other European countries, the Master of Engineering is often considered an undergraduate degree of slightly longer duration than the Bachelor of Engineering.

Practicing engineers
From the Global Positioning System to electric power generation, electrical engineers have contributed to the development of a wide range of technologies. They design, develop, test and supervise the deployment of electrical systems and electronic devices. For example, they may work on the design of telecommunication systems, the operation of electric power stations, the lighting and wiring of buildings, the design of household appliances or the electrical control of industrial machinery. Many senior engineers manage a team of technicians or other engineers and for this reason project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important.
The workplaces of electrical engineers are just as varied as the types of work they do. Electrical engineers may be found in the pristine lab environment of a fabrication plant, the offices of a consulting firm or on site at a mine. During their working life, electrical engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers and other engineers.

Tools and work
Electrical engineering has many sub-disciplines, the most popular of which are listed below. Although there are electrical engineers who focus exclusively on one of these sub-disciplines, many deal with a combination of them. Sometimes certain fields, such as electronic engineering and computer engineering, are considered separate disciplines in their own right.

Sub-disciplines

Main article: Power engineeringElectrical engineer Power

Main article: Control engineering Control

Main article: Electronic engineering Electronics

Main article: Microelectronics Microelectronics

Main article: Signal processing Signal processing

Main article: Telecommunications engineering Telecommunications

Main article: Instrumentation engineering Instrumentation engineering

Main article: Computer engineering Related disciplines

Computer engineering
Electronic engineering
Electronic design automation
Transformer
Electric motor
List of electrical engineering topics (alphabetical)
List of electrical engineering topics (thematic)
List of electrical engineers

No comments: